Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anat ; 235(5): 940-952, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31373388

RESUMO

As in many other fossorial tetrapods, the most obvious adaptations to scratch-digging in the subterranean tuco-tuco (Rodentia, Ctenomyidae, Ctenomys) are found in the hands, which among other adaptations, present the mesaxonic condition; i.e. the central digits are more developed, and also their claws, which are curved and elongated. The thumb is atrophied and aligned with the rest of the digits, showing a small and flat claw. This configuration of digits and claws seems to be in accordance with what it is expected for rodents: rudimentary movements when handling food items. However, on the palmar side of the hand, tuco-tucos have several pads, the thenar (located under the thumb) being the most developed. In this study, we investigated the functional morphology of the thenar pad through different approaches: musculoskeletal anatomy, histology and functionality. The analysis of radiographs and clarified and double-stained hand samples of Ctenomys talarum and C. australis showed that the thenar pad is supported by a paddle-shaped bone that articulates with a protrusion in the scapholunate bone. This bone, flat and long, continues in a flat cartilaginous structure, with a shape similar to a claw. Dissections showed that the thenar pad has several associated muscles: the m. palmaris longus, the m. abductor pollicis longus, and a massive muscular complex located between the thumb and the thenar pad. By topology it might be inferred that this complex is formed by the m. abductor pollicis brevis, the m. flexor pollicis brevis and the m. adductor pollicis brevis. Longitudinal histological sections of the thenar pad stained with hematoxylin-eosin showed a thick layer of keratin at the distal end, external face. The observation of live specimens of C. talarum foraging on two food items of different size and filmed at 300 fps showed that the thenar pad acts as an opposable thumb, with digit-like movements. Tuco-tucos are able to perform more precise movements than expected, and to grasp and manipulate the food with one hand. In previous studies, it was suggested that the thenar pad was supported by a 'palmar ossicle', or 'prepollex' (= radial sesamoid bone). Our results suggest that this sesamoid underwent a radical change on its morphology, making the thenar pad a part of the food handling system in Ctenomys, so the thenar pad might be considered a 'false thumb', rather than a palmar pad. It is suggested to advance on the description and functional analysis of the thenar pad, redefining the structure, since the terms used so far to define it would not be accurate.


Assuntos
Pé/anatomia & histologia , Membro Anterior/anatomia & histologia , Atividade Motora/fisiologia , Roedores/anatomia & histologia , Adaptação Fisiológica/fisiologia , Animais , Pé/fisiologia , Membro Anterior/fisiologia
2.
J Morphol ; 275(8): 902-13, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24643820

RESUMO

Burrow construction in the subterranean Ctenomys talarum (Rodentia: Ctenomyidae) primarily occurs by scratch-digging. In this study, we compared the limbs of an ontogenetic series of C. talarum to identify variation in bony elements related to fossorial habits using a morphometrical and biomechanical approach. Diameters and functional lengths of long bones were measured and 10 functional indices were constructed. We found that limb proportions of C. talarum undergo significant changes throughout postnatal ontogeny, and no significant differences between sexes were observed. Five of six forelimb indices and two of four hindlimb indices showed differences between ages. According to discriminant analysis, the indices that contributed most to discrimination among age groups were robustness of the humerus and ulna, relative epicondylar width, crural and brachial indices, and index of fossorial ability (IFA). Particularly, pups could be differentiated from juveniles and adults by more robust humeri and ulnae, wider epicondyles, longer middle limb elements, and a proportionally shorter olecranon. Greater robustness indicated a possible compensation for lower bone stiffness while wider epicondyles may be associated to improved effective forces in those muscles that originate onto them, compensating the lower muscular development. The gradual increase in the IFA suggested a gradual enhancement in the scratch-digging performance due to an improvement in the mechanical advantage of forearm extensors. Middle limb indices were higher in pups than in juveniles-adults, reflecting relatively more gracile limbs in their middle segments, which is in accordance with their incipient fossorial ability. In sum, our results show that in C. talarum some scratch-digging adaptations are already present during early postnatal ontogeny, which suggests that they are prenatally shaped, and other traits develop progressively. The role of early digging behavior as a factor influencing on morphology development is discussed.


Assuntos
Ossos da Extremidade Superior/anatomia & histologia , Roedores/anatomia & histologia , Adaptação Fisiológica , Animais , Comportamento Animal , Ossos da Extremidade Superior/crescimento & desenvolvimento , Embrião de Mamíferos/anatomia & histologia , Feminino , Membro Anterior/anatomia & histologia , Membro Anterior/crescimento & desenvolvimento , Membro Posterior/anatomia & histologia , Masculino , Tamanho do Órgão , Roedores/crescimento & desenvolvimento
3.
J Exp Zool A Ecol Genet Physiol ; 321(4): 220-32, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24482421

RESUMO

Mammals have developed sophisticated strategies adapting to particular locomotor modes, feeding habits, and social interactions. Many rodent species have acquired a fossorial, semi-fossorial, or even subterranean life-style, converging on morphological, anatomical, and ecological features but diverging in the final arrangement. These ecological variations partially depend on the functional morphology of their digging tools. Muscular and mechanical features (e.g., lever arms relationship) of the bite force were analyzed in three caviomorph rodents with similar body size but different habits and ecological demands of the jaws. In vivo forces were measured at incisors' tip using a strain gauge load cell force transducer whereas theoretical maximal performance values, mechanical advantages, and particular contribution of each adductor muscle were estimated from dissections in specimens of Ctenomys australis (subterranean, solitary), Octodon degus (semi-fossorial, social), and Chinchilla laniger (ground-dweller, colonial). Our results showed that C. australis bites stronger than expected given its small size and C. laniger exhibited the opposite outcome, while O. degus is close to the expected value based on mammalian bite force versus body mass regressions; what might be associated to the chisel-tooth digging behavior and social interactions. Our key finding was that no matter how diverse these rodents' skulls were, no difference was found in the mechanical advantage of the main adductor muscles. Therefore, interspecific differences in the bite force might be primarily due to differences in the muscular development and force, as shown for the subterranean, solitary and territorial C. australis versus the more gracile, ground-dweller, and colonial C. laniger.


Assuntos
Comportamento Animal/fisiologia , Força de Mordida , Roedores/fisiologia , Adaptação Fisiológica , Animais , Fenômenos Biomecânicos , Ecologia , Arcada Osseodentária , Filogenia , Crânio/fisiologia
4.
Behav Processes ; 92: 79-87, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23124014

RESUMO

An alternative approach to increase the efficiency of predator control and selectivity is to consider the natural behavioural repertoire of the target species and how such behaviours may increase their vulnerability. Neophobia, or the hesitancy to approach a novel food item, object, or place, is an important factor influencing the investigative behaviour of animals, and its incorporation to predator control techniques may help to reduce losses of livestock to predators. In this study, we simultaneously evaluated the existence and intensity of neophobic responses in two sympatric fox species, the Culpeo (Pseudalopex culpaeus) and the Grey (P. griseus) foxes in southern Patagonia, Argentina. For this purpose, we used bait stations to compare fox behavioural responses in the absence (pre-treatment), presence (treatment) and removal (post-treatment) of a novel stimulus, which consisted of an orange PVC-traffic cone. Both fox species showed a neophobic response: bait-station visitation rates decreased (P=0.005 and P=0.048, for Culpeo and Grey foxes, respectively) in the presence of the novel object. The intensity of the response differed between species being higher for Culpeo foxes (approximately 80% of reduction in visitation rate during treatment for Culpeo foxes vs. 10% for Grey foxes). However, the bait-station visitation pattern after novel object removal indicated that animals probably increased exploration of the station. The high level of neophobia achieved by the Culpeo fox, together with an increase in post-treatment site exploration, suggests that behavioural manipulations (reduction of neophobia and its consequent increase in risk taking) could improve selective and efficient fox control in rural areas where livestock production is a major economic activity.


Assuntos
Comportamento Exploratório/fisiologia , Raposas/fisiologia , Comportamento Predatório/fisiologia , Animais , Argentina , Controle Comportamental , Comportamento Animal , Simpatria
5.
Brain Behav Evol ; 73(2): 138-49, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19451709

RESUMO

We evaluated brain size evolution in a specialized subterranean mammal, the ctenomyid rodent genus Ctenomys (tuco-tuco) and compared it, within a phylogenetic framework, to other caviomorph rodents differing in body size and modes of life. Although brain size in Ctenomys falls below the regression line obtained for caviomorph rodents, some fossorial species within the sister family Octodontidae, which make use of both above and below ground habitats, have a relatively larger brain size. Ctenomys has experienced a relatively recent and 'explosive' cladogenesis which yielded approximately 60 living species differing almost one order of magnitude in body size. Based on the evolutionary lag hypothesis between body versus brain size evolution, a negative correlation between encephalization quotient and body size would be expected for a group experiencing such a recent diversification in size. This is because a decrease of body size occurring during the emergence of a new species should produce a correspondingly greater encephalization and vice versa. Despite the fact that the allometric coefficient of brain weight versus body weight for 30 living species of Ctenomys was lower than that obtained for families within Caviomorpha, we failed to find any significant relationship between encephalization and body weight. Finally, the relationship between brain size and metabolism was assessed for those species of Ctenomys in which metabolic data are available. Brain size evolution in Ctenomys is discussed in regards to sensory capabilities and behavioral attributes associated with the occupation of a subterranean ecological niche.


Assuntos
Adaptação Fisiológica/fisiologia , Evolução Biológica , Encéfalo/anatomia & histologia , Roedores/anatomia & histologia , Animais , Atrofia , Comportamento Animal/fisiologia , Encéfalo/fisiologia , Comportamento Exploratório/fisiologia , Comportamento Alimentar/fisiologia , Atividade Motora/fisiologia , Tamanho do Órgão/fisiologia , Filogenia , Roedores/fisiologia , Comportamento Social , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...